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Demand paging: 

 To be simple in demand paging the entire process should be in the disk in 

the form of pages  

 In this technique a page is brought into memory for its execution only 

when it is demanded  

 It is  a combination of paging and swapping 

 

 

 

 

 

Here in the above diagram all the pages are loaded into backing store (hard disk). 

By the mechanism of swapping when the main memory requests the page  

Only then it is loaded from hard disk 

As main memory is small in size and cannot handle large programs only few 

pages are loaded into main memory after completing its execution it  is swapped 

out simply and new process  is then swapped in.. 
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Basic Concepts : 

When a process is to be swapped in, the pager guesses which pages will be used 

before the process is swapped out again. Instead of swapping in a whole process, 

the pager brings only those pages into memory. Thus, it avoids reading into 

memory pages that will not be used anyway, decreasing the swap time and the 

amount of physical memory needed. With this scheme, we need some form of 

hardware support to distinguish between the pages that are in memory and the 

pages that are on the disk. The valid–invalid bit scheme  can be used for this 

purpose. This time, however, when this bit is set to “valid,” the associated page 

is both legal and in memory. If the bit is set to “invalid,” the page either is not 

valid (that is, not in the logical address space of the process) or is valid but is 

currently on the disk. The page-table entry for a page that is brought into 

memory is set as usual, but the page-table entry for a page that is not currently 

in memory is either simply marked invalid or contains the address of the page 

on disk. 

Marking a page invalid will have no effect if the process never attempts to 

access that page.  

 

               Figure:  Page table when some pages are not in main memory 
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                  Figure: Steps in handling a page fault 

But what happens if the process tries to access a page that was not brought into 

memory? Access to a page marked invalid causes a page fault. The paging 

hardware, in translating the address through the page table, will notice that the 

invalid bit is set, causing a trap to the operating system. This trap is the result of 

the operating system’s failure to bring the desired page into memory. The 

procedure for handling this page fault is straightforward. 

1. We check an internal table (usually kept with the process control block) for 

this process to determine whether the reference was a valid or an invalid 

memory access. 

 2. If the reference was invalid, we terminate the process. If it was valid but we 

have not yet brought in that page, we now page it in. 

 3. We find a free frame (by taking one from the free-frame list, for example). 

 4. We schedule a disk operation to read the desired page into the newly 

allocated frame.  

5. When the disk read is complete, we modify the internal table kept with the 

process and the page table to indicate that the page is now in memory. 6. We 
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restart the instruction that was interrupted by the trap. The process can now 

access the page as though it had always been in memory.  

In the extreme case, we can start executing a process with no pages in memory. 

When the operating system sets the instruction pointer to the first instruction of 

the process, which is on a non-memory-resident page, the process immediately 

faults for the page. After this page is brought into memory, the process 

continues to execute, faulting as necessary until every page that it needs is in 

memory. At that point, it can execute with no more faults. This scheme is pure 

demand paging: never bring a page into memory until it is required. 

 The hardware to support demand paging is the same as the hardware for paging 

and swapping: 

 • Page table. This table has the ability to mark an entry invalid through a valid–

invalid bit or a special value of protection bits. 

 • Secondary memory. This memory holds those pages that are not present in 

main memory. The secondary memory is usually a high-speed disk. It is known 

as the swap device, and the section of disk used for this purpose is known as 

swap space. 

A crucial requirement for demand paging is the ability to restart any instruction 

after a page fault. Because we save the state (registers, condition code, 

instruction counter) of the interrupted process when the page fault occurs, we 

must be able to restart the process in exactly the same place and state, except 

that the desired page is now in memory and is accessible. A page fault may 

occur at any memory reference. If the page fault occurs on the instruction fetch, 

we can restart by fetching the instruction again. If a page fault occurs while we 

are fetching an operand, we must fetch and decode the instruction again and 

then fetch the operand.  

Advantages : 

 Reduces memory requirement 

 Swap time is also reduced. 
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 increases the degree of multiprogramming(cpu utilization time increases ) 

Disadvantages: 

 Page fault rate increases for bigger programs . 

 If the size of swap file is big it is difficult for main memory  

 

Thrashing: 

Look at any process that does not have “enough” frames. If the process 

does not have the number of frames it needs to support pages in active use, it 

will quickly page-fault. At this point, it must replace some page. However, 

since all its pages are in active use, it must replace a page that will be needed 

again right away. Consequently, it quickly faults again, and again, and again, 

replacing pages that it must bring back in immediately. This high paging 

activity is called thrashing. A process is thrashing if it is spending more time 

paging than executing. 

Cause of Thrashing : 

Thrashing results in severe performance problems. 

The operating system monitors CPU utilization. If CPU utilization is too low, 

we increase the degree of multiprogramming by introducing a new process to 

the system. A global page-replacement algorithm is used; it replaces pages 

without regard to the process to which they belong. Now suppose that a 

process enters a new phase in its execution and needs more frames. It starts 

faulting and taking frames away from other processes. These processes need 

those pages, however, and so they also fault, taking frames from other 

processes. These faulting processes must use the paging device to swap pages 

in and out. As they queue up for the paging device, the ready queue empties. 

As processes wait for the paging device, CPU utilization decreases. The CPU 

scheduler sees the decreasing CPU utilization and increases the degree of 

multiprogramming as a result. The new process tries to get started by taking 

frames from running processes, causing more page faults and a longer queue 

for the paging device. As a result, CPU utilization drops even further, and the 

CPU scheduler tries to increase the degree of multiprogramming even more. 

Thrashing has occurred, and system throughput plunges. The pagefault rate 

increases tremendously. As a result, the effective memory-access time 

increases. No work is getting done, because the processes are spending all their 

time paging. 
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 This phenomenon is illustrated in Figure, in which CPU utilization is 

plotted against the degree of multiprogramming. As the degree of 

multiprogramming increases, CPU utilization also increases, although more 

slowly, until a maximum is reached. If the degree of multiprogramming is 

increased even further, thrashing sets in, and CPU utilization drops sharply. At 

this point, to increase CPU utilization and stop thrashing, we must decrease the 

degree of multiprogramming. 

 

 
                          Figure: Thrashing 

We can limit the effects of thrashing by using a local replacement 

algorithm (or priority replacement algorithm). With local replacement, if one 

process starts thrashing, it cannot steal frames from another process and cause 

the latter to thrash as well. However, the problem is not entirely solved. If 

processes are thrashing, they will be in the queue for the paging device most of 

the time. The average service time for a page fault will increase because of the 

longer average queue for the paging device. Thus, the effective access time 

will increase even for a process that is not thrashing. To prevent thrashing, we 

must provide a process with as many frames as it needs. 

 we can know how many frames it “needs” by several techniques. The 

working-set strategy starts by looking at how many frames a process is actually 

using. This approach defines the locality model of process execution. The 

locality model states that, as a process executes, it moves from locality to 

locality. A locality is a set of pages that are actively used together. A program 

is generally composed of several different localities, which may overlap. For 

example, when a function is called, it defines a new locality. In this locality, 
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memory references are made to the instructions of the function call, its local 

variables, and a subset of the global variables. When we exit the function, the 

process leaves this locality, since the local variables and instructions of the 

function are no longer in active use. We may return to this locality later. we see 

that localities are defined by the program structure and its data structures. The 

locality model states that all programs will exhibit this basic memory reference 

structure. 

We allocate enough frames to a process to accommodate its current 

locality. It will fault for the pages in its locality until all these pages are in 

memory; then, it will not fault again until it changes localities. If we do not 

allocate enough frames to accommodate the size of the current locality, the 

process will thrash, since it cannot keep in memory all the pages that it is 

actively using.  

Page-Fault Frequency: 

 The working-set model is successful, and knowledge of the working set can be 

useful for prepaging , but it seems a clumsy way to control thrashing. A 

strategy that uses the page-fault frequency (PFF) takes a more direct approach. 

The specific problem is how to prevent thrashing. Thrashing has a high page-

fault rate. Thus, we want to control the page-fault rate. When it is too high, we 

know that the process needs more frames. Conversely, if the page-fault rate is 

too low, then the process may have too many frames. We can establish upper 

and lower bounds on the desired page-fault rate. If the actual page-fault rate 

exceeds the upper limit, we allocate the process another frame. If the page-fault 

rate falls below the lower limit, we remove a frame from the process. Thus, we 

can directly measure and control the page-fault rate to prevent thrashing. 

 

 

 


