
 UNIT-5

Demand paging:

 To be simple in demand paging the entire process should be in the disk in

the form of pages

 In this technique a page is brought into memory for its execution only

when it is demanded

 It is a combination of paging and swapping

Here in the above diagram all the pages are loaded into backing store (hard disk).

By the mechanism of swapping when the main memory requests the page

Only then it is loaded from hard disk

As main memory is small in size and cannot handle large programs only few

pages are loaded into main memory after completing its execution it is swapped

out simply and new process is then swapped in..

 UNIT-5

Basic Concepts :

When a process is to be swapped in, the pager guesses which pages will be used

before the process is swapped out again. Instead of swapping in a whole process,

the pager brings only those pages into memory. Thus, it avoids reading into

memory pages that will not be used anyway, decreasing the swap time and the

amount of physical memory needed. With this scheme, we need some form of

hardware support to distinguish between the pages that are in memory and the

pages that are on the disk. The valid–invalid bit scheme can be used for this

purpose. This time, however, when this bit is set to “valid,” the associated page

is both legal and in memory. If the bit is set to “invalid,” the page either is not

valid (that is, not in the logical address space of the process) or is valid but is

currently on the disk. The page-table entry for a page that is brought into

memory is set as usual, but the page-table entry for a page that is not currently

in memory is either simply marked invalid or contains the address of the page

on disk.

Marking a page invalid will have no effect if the process never attempts to

access that page.

 Figure: Page table when some pages are not in main memory

 UNIT-5

 Figure: Steps in handling a page fault

But what happens if the process tries to access a page that was not brought into

memory? Access to a page marked invalid causes a page fault. The paging

hardware, in translating the address through the page table, will notice that the

invalid bit is set, causing a trap to the operating system. This trap is the result of

the operating system’s failure to bring the desired page into memory. The

procedure for handling this page fault is straightforward.

1. We check an internal table (usually kept with the process control block) for

this process to determine whether the reference was a valid or an invalid

memory access.

 2. If the reference was invalid, we terminate the process. If it was valid but we

have not yet brought in that page, we now page it in.

 3. We find a free frame (by taking one from the free-frame list, for example).

 4. We schedule a disk operation to read the desired page into the newly

allocated frame.

5. When the disk read is complete, we modify the internal table kept with the

process and the page table to indicate that the page is now in memory. 6. We

 UNIT-5

restart the instruction that was interrupted by the trap. The process can now

access the page as though it had always been in memory.

In the extreme case, we can start executing a process with no pages in memory.

When the operating system sets the instruction pointer to the first instruction of

the process, which is on a non-memory-resident page, the process immediately

faults for the page. After this page is brought into memory, the process

continues to execute, faulting as necessary until every page that it needs is in

memory. At that point, it can execute with no more faults. This scheme is pure

demand paging: never bring a page into memory until it is required.

 The hardware to support demand paging is the same as the hardware for paging

and swapping:

 • Page table. This table has the ability to mark an entry invalid through a valid–

invalid bit or a special value of protection bits.

 • Secondary memory. This memory holds those pages that are not present in

main memory. The secondary memory is usually a high-speed disk. It is known

as the swap device, and the section of disk used for this purpose is known as

swap space.

A crucial requirement for demand paging is the ability to restart any instruction

after a page fault. Because we save the state (registers, condition code,

instruction counter) of the interrupted process when the page fault occurs, we

must be able to restart the process in exactly the same place and state, except

that the desired page is now in memory and is accessible. A page fault may

occur at any memory reference. If the page fault occurs on the instruction fetch,

we can restart by fetching the instruction again. If a page fault occurs while we

are fetching an operand, we must fetch and decode the instruction again and

then fetch the operand.

Advantages :

 Reduces memory requirement

 Swap time is also reduced.

 UNIT-5

 increases the degree of multiprogramming(cpu utilization time increases)

Disadvantages:

 Page fault rate increases for bigger programs .

 If the size of swap file is big it is difficult for main memory

Thrashing:

Look at any process that does not have “enough” frames. If the process

does not have the number of frames it needs to support pages in active use, it

will quickly page-fault. At this point, it must replace some page. However,

since all its pages are in active use, it must replace a page that will be needed

again right away. Consequently, it quickly faults again, and again, and again,

replacing pages that it must bring back in immediately. This high paging

activity is called thrashing. A process is thrashing if it is spending more time

paging than executing.

Cause of Thrashing :

Thrashing results in severe performance problems.

The operating system monitors CPU utilization. If CPU utilization is too low,

we increase the degree of multiprogramming by introducing a new process to

the system. A global page-replacement algorithm is used; it replaces pages

without regard to the process to which they belong. Now suppose that a

process enters a new phase in its execution and needs more frames. It starts

faulting and taking frames away from other processes. These processes need

those pages, however, and so they also fault, taking frames from other

processes. These faulting processes must use the paging device to swap pages

in and out. As they queue up for the paging device, the ready queue empties.

As processes wait for the paging device, CPU utilization decreases. The CPU

scheduler sees the decreasing CPU utilization and increases the degree of

multiprogramming as a result. The new process tries to get started by taking

frames from running processes, causing more page faults and a longer queue

for the paging device. As a result, CPU utilization drops even further, and the

CPU scheduler tries to increase the degree of multiprogramming even more.

Thrashing has occurred, and system throughput plunges. The pagefault rate

increases tremendously. As a result, the effective memory-access time

increases. No work is getting done, because the processes are spending all their

time paging.

 UNIT-5

 This phenomenon is illustrated in Figure, in which CPU utilization is

plotted against the degree of multiprogramming. As the degree of

multiprogramming increases, CPU utilization also increases, although more

slowly, until a maximum is reached. If the degree of multiprogramming is

increased even further, thrashing sets in, and CPU utilization drops sharply. At

this point, to increase CPU utilization and stop thrashing, we must decrease the

degree of multiprogramming.

 Figure: Thrashing

We can limit the effects of thrashing by using a local replacement

algorithm (or priority replacement algorithm). With local replacement, if one

process starts thrashing, it cannot steal frames from another process and cause

the latter to thrash as well. However, the problem is not entirely solved. If

processes are thrashing, they will be in the queue for the paging device most of

the time. The average service time for a page fault will increase because of the

longer average queue for the paging device. Thus, the effective access time

will increase even for a process that is not thrashing. To prevent thrashing, we

must provide a process with as many frames as it needs.

 we can know how many frames it “needs” by several techniques. The

working-set strategy starts by looking at how many frames a process is actually

using. This approach defines the locality model of process execution. The

locality model states that, as a process executes, it moves from locality to

locality. A locality is a set of pages that are actively used together. A program

is generally composed of several different localities, which may overlap. For

example, when a function is called, it defines a new locality. In this locality,

 UNIT-5

memory references are made to the instructions of the function call, its local

variables, and a subset of the global variables. When we exit the function, the

process leaves this locality, since the local variables and instructions of the

function are no longer in active use. We may return to this locality later. we see

that localities are defined by the program structure and its data structures. The

locality model states that all programs will exhibit this basic memory reference

structure.

We allocate enough frames to a process to accommodate its current

locality. It will fault for the pages in its locality until all these pages are in

memory; then, it will not fault again until it changes localities. If we do not

allocate enough frames to accommodate the size of the current locality, the

process will thrash, since it cannot keep in memory all the pages that it is

actively using.

Page-Fault Frequency:

 The working-set model is successful, and knowledge of the working set can be

useful for prepaging , but it seems a clumsy way to control thrashing. A

strategy that uses the page-fault frequency (PFF) takes a more direct approach.

The specific problem is how to prevent thrashing. Thrashing has a high page-

fault rate. Thus, we want to control the page-fault rate. When it is too high, we

know that the process needs more frames. Conversely, if the page-fault rate is

too low, then the process may have too many frames. We can establish upper

and lower bounds on the desired page-fault rate. If the actual page-fault rate

exceeds the upper limit, we allocate the process another frame. If the page-fault

rate falls below the lower limit, we remove a frame from the process. Thus, we

can directly measure and control the page-fault rate to prevent thrashing.

